Skip to content

R1V4

Create a chat completion request that supports text and image input, returning model-generated responses.

Endpoint

POST /api/v1/chat/completions

Request Parameters

Request Body (JSON)

json
{
  "model": "string (required)",
  "messages": [
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "string"
        },
        {
          "type": "image_url",
          "image_url": {
            "url": "string (base64 data URI)"
          }
        }
      ]
    }
  ],
  "stream": true
}

Parameter Description

ParameterTypeRequiredDescription
modelstringYesModel name: skywork/r1v4-lite or skywork/r1v4-vl-planner-lite
messagesarrayYesList of conversation messages, including user messages and assistant replies
streambooleanNoWhether to use streaming response, defaults to false. Set to true for SSE format response

messages Parameter Description

ParameterTypeRequiredDescription
rolestringYesMessage role, supports user, assistant, system
contentarrayYesMessage content, supports mixed text and image input

content Parameter Description

Text Content

json
{
  "type": "text",
  "text": "Please analyze this image"
}

Image Content

json
{
  "type": "image_url",
  "image_url": {
    "url": "..."
  }
}

Image URL supports base64-encoded data URI format:

  • Format: data:<mime_type>;base64,<base64_encoded_data>
  • Supported image formats: JPEG, PNG, GIF, WebP, etc.

Request Examples

Python Example

python
import requests
import base64
import os


def image_to_base64(image_path):
    """Convert image file to base64 encoding"""
    with open(image_path, "rb") as f:
        image_data = f.read()
        image_base64 = base64.b64encode(image_data).decode("utf-8")
        from mimetypes import guess_type

        mime_type, _ = guess_type(image_path)
        return f"data:{mime_type};base64,{image_base64}"


# Configuration
base_url = "https://api.skyworkmodel.ai"
api_key = "Your-API-Key"
model = "skywork/r1v4-lite"  # you can also use skywork/r1v4-vl-planner-lite to use planner model

# Prepare message content
contents = []

image_path = "path/to/your/image.jpg"  # Optional, you can use pure text in contents
if image_path and os.path.exists(image_path):
    image_base64 = image_to_base64(image_path)
    contents.append({"type": "image_url", "image_url": {"url": image_base64}})

contents.append({"type": "text", "text": "Please analyze this image"})

# Request data
data = {
    "messages": [{"role": "user", "content": contents}],
    "model": model,
    "stream": True,  # set to False for non-streaming response
    "enable_search": True,  # enable deepresearch mode, you can also set to False to use normal mode
}

# Request headers
headers = {
    "Content-Type": "application/json",
    "Accept": "text/event-stream",
    "Authorization": f"Bearer {api_key}",
}

# Send request
url = f"{base_url}/api/v1/chat/completions"
response = requests.post(url, json=data, headers=headers, stream=True, timeout=600)

# Handle streaming response
if response.status_code == 200:
    for line in response.iter_lines(decode_unicode=True):
        if line:
            print(line)
else:
    print(f"Request failed: {response.status_code}")
    print(f"Error message: {response.text}")

Text-Only Request

bash
curl -X POST "https://api.skyworkmodel.ai/api/v1/chat/completions" \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer <your-api-key>" \
  -H "Accept: text/event-stream" \
  -d '{
    "model": "[MODEL_NAME]",
    "messages": [
      {
        "role": "user",
        "content": [
          {
            "type": "text",
            "text": "How can I make a billion dollars?"
          }
        ]
      }
    ],
    "stream": true
  }'

Text + Image Request

bash
curl -X POST "https://api.skyworkmodel.ai/api/v1/chat/completions" \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer <your-api-key>" \
  -H "Accept: text/event-stream" \
  -d '{
    "model": "[MODEL_NAME]",
    "messages": [
      {
        "role": "user",
        "content": [
          {
            "type": "image_url",
            "image_url": {
              "url": "data:image/jpeg;base64,[YOUR BASE64 PICTURE]"
            }
          },
          {
            "type": "text",
            "text": "Please analyze this image"
          }
        ]
      }
    ],
    "stream": true
  }'

Response Format

Streaming Response (stream: true)

When the stream parameter is set to true, the response uses Server-Sent Events (SSE) format:

data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"[MODEL_NAME]","choices":[{"index":0,"delta":{"content":"Hello"},"finish_reason":null}]}

data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"[MODEL_NAME]","choices":[{"index":0,"delta":{"content":","},"finish_reason":null}]}

data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"[MODEL_NAME]","choices":[{"index":0,"delta":{"content":" I am"},"finish_reason":null}]}

data: [DONE]

Each data: line contains a JSON object with:

  • id: Response ID
  • object: Object type, usually chat.completion.chunk
  • created: Creation timestamp
  • model: Model name used
  • choices: List of choices, containing:
    • index: Choice index
    • delta: Incremental content, containing content field
    • finish_reason: Completion reason, null means not finished, stop means normal completion

Non-Streaming Response (stream: false)

When the stream parameter is set to false or not set, returns a complete JSON response:

json
{
  "id": "chatcmpl-123",
  "object": "chat.completion",
  "created": 1694268190,
  "model": "[MODEL_NAME]",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "Hello, I am an AI assistant, happy to serve you."
      },
      "finish_reason": "stop"
    }
  ],
  "usage": {
    "prompt_tokens": 10,
    "completion_tokens": 20,
    "total_tokens": 30
  }
}

Error Response

When a request fails, an error message is returned:

json
{
  "code": 400307,
  "code_msg": "Invalid API key",
}

Notes

  1. Image Size Limit: Recommended single image size not exceeding 10MB, base64 encoding increases size by approximately 33%
  2. Timeout Settings: Streaming responses may take a long time, recommend setting a reasonable timeout (e.g., 600 seconds)
  3. Streaming Response Handling: Need to properly handle SSE format, parse lines starting with data: line by line
  4. Model Selection: Choose the appropriate model based on requirements, different models have different capabilities and limitations